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Abstract

We give a formula for the duals of the masks associated with trivariate box spline functions.
We show how to construct trivariate nonseparable compactly supported biorthogonal
wavelets associated with box spline functions. The biorthogonal wavelets may have arbitrarily
high regularities.
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Keywords: Trivariate; Box splines; Biorthogonal wavelets

1. Introduction

In [8], Cohen, Daubechies, and Feauveau constructed biorthogonal dual functions
associated with wunivariate B-spline functions B, and compactly supported
biorthogonal wavelets associated with B,. Since then, the theory of multivariate
biorthogonal wavelets has been developed rapidly (cf., e.g., [6]). Since box spline
functions are a natural generalization of the well-known B-spline functions, several
researches have been done to construct bivariate compactly supported biorthogonal
wavelets associated with box spline functions (cf. e.g., [7,10,14,17,27-29]). Let By,
be the bivariate box spline whose Fourier transform is

. I . m : n
) [ — e 1 — e 1 — efl@i+m)
B =

l,m,n((U) ( i(,()l ) < iwz ) ( l((l)] + wZ) )
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for any positive integers Z,m,n and o = (w;, ) eR®. (For properties of bivariate
box spline functions, see [2,4]. For computation of these bivariate box spline
functions, see [5,22].) It is known that the integer translates and their dilations of a
box spline function By ,,, form a multi-resolution approximation of Ly(R?) (cf. [2] or
[26]). For small integers /, m, n, several different constructions of those biorthogonal
wavelets were given in [7,10,28,29]. In a recent paper [17], a general construction of
dual refinable functions of box splines and bi-orthogonal wavelets based on an
arbitrary order of box splines in any number of dimensions was given. Its duals can
have an arbitrary high order of the regularity. In another recent paper [14], He and
Lai gave an explicit formula of the dual function 35/7,,,,,1 associated with box spline
function By,,, for any integers /,m,n and compactly supported biorthogonal
wavelets associated with box spline function B, were constructed. Those
biorthogonal wavelets can be constructed to have arbitrarily high regularities.

In this paper, we are interested in generalizing the explicit formula for the dual box
spline functions and construction of biorthogonal box spline wavelets in [14] to the
trivariate setting. That is, we shall construct the compactly supported biorthogonal
wavelets associated with trivariate box spline functions. Let By, be the
trivariate box spline function whose Fourier transform is

i i i m i n
. 1 — ¢fr 1 — ¢l 1 — e
b= (52 (2 (55)
1— ei(w1+(uz+w;) P 1— ei(w2+w3) q 1— ei(w|+w3) r
X\ = - -
(l(wl + o+ UJ3)> ( i(w + w3) ) ( i(w) + w3) )

for any nonnegative integers ,m,n, p, q,r and o = (w, w3, ®3) eR’. (For this choice
of the direction set and other properties of trivariate box spline functions, see [2].)
Without loss of generality, we may assume that all /, m, and n are positive. Since the

tensor product case is not of interest here, we assume that at least one of p, ¢, r is not
zero. It is known that By, ,, - generates a multiresolution approximation of LZ(R3)

(cf. [2, p. 90]). Our first step is to construct a compactly supported function Elmﬁn_p,q,

generating a multiresolution approximation of L,(R?) which is a biorthogonal dual
to Bimnpqr in the following sense:

‘/3 Bl,nl,n,p.q,i'(x - k)él,m,n.p,q,r(x - k) dx = 5k,k’ (11)
R

for all 3D-integers k, k'€ Z*, where Ojk is the standard Kronecker notation defined
by djx =0 if j#k and djx =1 if j =k and Z is the collection of all integers. Our
second step is to construct compactly supported biorthogonal wavelets y; and 1/;j for
j=1,...,7 and two families of FIR filters {M;,i=1,...,7} and {]\Zj,j: 1,...,7}
with

” o w3,
Ui() = M3 7 D) Brnnpy (5)s T =107 (1.2)
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and

l/;j(w) = %(6177 8173 em‘T)Bl,m,n

- o) Koy .3 (

(& .
5), j=1,...7 (1.3)

such that the integer translates and their dilations of the ;’s and lﬂj’s form two dual

Riesz bases for Ly(R?) (cf. [8] for the univariate setting or [6,21] for the multivariate
setting) and the two families of masks form an exact reconstruction of synthesis/analysis
filter bank which may be possibly used in data compression for 3D seismic data files.

It should be pointed out that the study of constructing compactly supported
biorthogonal wavelets associated with trivariate box spline functions is not a simple
generalization of the counterpart in the bivariate setting. We are only able to extend
our method in [14] to the case that either ¢ =0 or r = 0. In this paper, we first
with ¢ = 0 and r>0 follows from the case r = 0 and ¢>0 immediately by the box
spline symmetry

Bimnp.g0(X3,X2,X1) = Bumpoqg(X1,X2,X3).

However, the study of the construction of biorthogonal compactly supported

SJDq,

we shall use

Bt mnpg = Brmnp.aqo-

We shall give an explicit formula for El,mﬁn,p,q for any given positive integers /,m,n, p
and ¢ in Section 2. The formula is a generalization of the counterpart in the bivariate
setting in [14]. The regularities of these biorthogonal dual functions are studied in
Section 2.2 which is based on the theory developed in [13]. General results on the
regularity can be found in [9,18]. Although there exist some general schemes on how
to find matrix extension for constructing biorthogonal wavelets (cf. [3,17,28,29]), we
will give a new matrix extension scheme, which is easier to implement, for
constructing M;’s and M ;’s that lead to compactly supported biorthogonal wavelets
with arbitrarily high regularities in Section 3. The proof of the fact that these y;’s

and lﬁj’s generate two dual Riesz bases may be based on a straightforward
generalization of the arguments for the univariate setting in [8] or based on the
multivariate theory in [6,11,30]. Finally, we give several examples for small integers
/,m,n,p,q in Section 4.

2. Construction of compactly supported biorthogonal dual functions

2.1. Construction of biorthogonal dual masks

In the following discussion, we assume that z = (zy, z2, z3) eC*. We know that

Mo(z) = 1+ ‘ L4+ 2\" 1+ 23\" 1+ 212223\’ (1 + 2223\ ¢
"2 2 2 2 2
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is the refinement mask of the box spline function By, 4. For any positive integer
N, we define a bivariate polynomial

Nl roN -1
Ln(x,y) = Z( P P (2.1)
k=0
which satisfies
NPy y) + N Lu(y,x) = (x+ ) (2.2)

Define

l+x1+y1l—-—x1-y
Hxy) = 2 (ST

for any positive integer 7. It follows immediately from (2.2) that
T+x\"/1+p\° 1—x\"/1-»\"

— | H — ) H(—x,—

(2)(2>1(x,y)+(2)<2 o(—x,—y)

_ (1 J;xy>2f_l_ (2.4)

f::( —1+k>y.

0

Let

It is well known (see [12]) that
(1= )" Py(y) +y"Py(1 —p) = L (2.5)

For z = (z;, 22, z3), we define

- = N-1+k . (1= 2k
Dy(e) = (12223) Z( k (1) (z12223) k<2212223>
)

N (¥
);

Note that since each term in the summation is nonnegative and (z,22z3)" Dy(z)>1

for |zi| = |z2| = |z3] = 1. If we take z; = ¢, j=1,2,3, and let y = sin® 2-2+ i
(2.5), we get
1 N - N
+ 212273 Dy(z) + 212223 Dy(—2) =1,
2 2
Izl =1, j=12,3 (2.6)

for any positive integer N. Now we can define the refinement mask Mo(z) for
E/_,M,M as follows:

A e N N e

1_’_271271271 p—r 1—|—Zﬁlzil o—q B B
x ( 12 2 “3 22 3 HJ,L(Z 1)DL+,7(Z l)
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with z71 = (71, 231, z31), where
14 - 14 2pzp) L3
He 1 (2) = < 3 1) ( 22 3) H,(z2,23)H (21, 2223)

and the positive integers o,p,L,n are so chosen that o>max(/,m,n,q), n>
(p-1)/2, p=2n+1and L>30 — 1.
We are ready to present the main result of this subsection.

Theorem 2.1. My(z), defined above, is a dual mask of My satisfying
ST MoMo((—1) 1z, (—1) 2z, (=1)z3) = 1,

/1,f2,/3€{0,1}
21| = |22] = |z3] = 1. (2.7)

Proof. First we claim that

Z M()M()((—l)/lzl,(—1)/222,(—1)/323)
/1,/2,/36{0,1}
(—l)/1+/2+/3:1

1+ 212223 AL+
= Dry(2) <2 :

Indeed, the left-hand side of (2.8) can be written as

14 212023\ | 1+ 2\ L /1 + 2oz E20 !
DL+n(Z)( 2123) ( 3 l) < 22 3) Hi(z1,2223)

() () (2 (5

x H,(— 22,23> ( ) < _ZZZ3>L_20—+1HL(ZI7Z2Z3)
((53) (57) memar (57)

(52 mees)]

Then (2.8) follows by using (2.4) twice for 1 = ¢ and L, respectively. It is easy to see
(2.7) by (2.8) and (2.6). O

We are now able to define the dual By, ,,, associated with box spline function
B/.,m,n,p,q by

0
lw 2k iwy /2K iws )2k
B/mn,pq (1)],602,603 H 1/ € 2/ )€ »/ ) (29)
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We first note that My(1,1,1) = 1 and hence ﬁ/,m,n,p,q is well defined for each mweR”.
We shall show in the next subsection l?/ﬁm,n‘p’q can have arbitrarily high regularity by
choosing integers g, p(= 25 + 1) and L sufficiently large. We will show that éﬂm’n_p,q
is a dual to box spline By, ,, 4 in the sense of (1.1) in Section 2.3.

2.2. Smoothness of the dual l-?;_m’,,’p_’q

To make By, 46 C*(R?) for >0, we need to estimate the infinite product in
(2.9). Note that

L 2 —1
H, 151,152 <
[H(e,¢%)] §:< .

k=0
21 1k V2
k ( ) )
T— 27— 1 —1—k 1/2
~\ &
1/2
=P, <sm2 él) P, (sm2 %) .
The last equality can be seen in [14]. Now we need a result from [13],

. ¢
H P, (sin2 W) <co(1 + |E)*,
=1

where u == 21‘1’§g32<1. Also notice that |Dy,(z)| = Pri,(sin> 259523 we get

4. &l Tk

sin = sin =
2 2

SIS

COS = COS =
2 2

T—

261

sin

2 ¢

cos” —
2

M_

Il
S
_

26

sin® =
2

» &

cos” —
2

=~

3

H\Mo ENENED]

. 4 . wH|o—m w3 o—n
< ot kel o)
‘ Sinc 3 ’ ’ SInc 3 ’ sinc 5
. wy oz Eoatl o w3 P
X ‘SIHC ‘ ‘SIHC f‘
C(1+ |a])" (1 + o3 )"" (1 + o )" (1 + | + w3))""
x (14 o1 + @ + o))

<C(1 + |(,U |) (u—1) L+/( + |w2‘)(u71)0+m( + ‘(/()3|) lo+n

1) L+20+¢—1 (

x (14 | + o3)) " L+ o) + @ + w0,

where sinc & == sng is the well-known sinc function.
For fixed /,m,n, p, g and for any o >0, we choose g,7, L and p = 25 + 1, such that
max((u—1)L+7¢,(u—Do+m,(u—No+n)< —(a+1)
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and
(u—1L+20+4¢g—-1<0, 2u(L+n)—p+p<0.
That is
o> (max(m,n) +o+1)/(1 — u), (2.10)
L>max({/ +o+ 1,26 +q—1)/(1 — ), (2.11)
2ul+p—1

p=2n+1 with 5> (2.12)

2(1 = p)
Therefore, we have established the following.

Theorem 2.2. Let o, L, p and n be integers satisfying (2.10), (2.11) and (2.12). Then
By jnnpy defined in (2.9) is in C*(R?)
2.3. Biorthogonality and Riesz basis property

We next show that By, ,,, defined in (2.9) is a biorthogonal dual to box spline
function By 4 in the sense of (1.1). Indeed we have

Theorem 2.3. For ¢,L and p(= 2n+ 1) sufficiently large, the integer translates of

Bt mnpq form a Riesz basis for spany, gs) { B/ mnpq(x — k), keZ’}.

Proof. Mainly, we need to prove the following inequality (see e.g. [25, Chapter 2]):
0<A< Y 1Brmnpg(o + 27K)P<B< + oo
keZ?

The second inequality follows easily from the proof of Theorem 2.2 by choosing
o = 0. The first inequality is an immediate result of Lemma 2.5, which may be proved
by an extended argument in [14]. [

Remark 2.4. We note that the choice of o = 0 in the proof of Theorem 2.3 is a little
stronger than necessary to make BS/_,,,,,,_M to generate a Riesz basis. For specific
/,m,n,p and g, one may use the methods like spectral radius (cf. [11,18]) to get better

estimate of decay of By 4(0).

Lemma 2.5. For o,L and p(= 2n + 1) sufficiently large,
Z |é/,m,n,p,q§/,m,n,p,q(w + 2717k)|2 =>A>0. (213)

keZ3

Proof. During the reviewing process of this paper, Prof. Rong-Qing Jia suggested
another approach to prove Theorem 2.6. The new proof is much simpler than the
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original proof of Lemma 2.5 which is a straightforward, but long and tedious
calculation of the left-hand side of (2.13) for different regions of w. See [15] for the
original proof. Thus, for the convenience of the reader, we present the simpler proof
here. The authors would like to thank Prof. Jia for his suggestion and help in the
reading of the proof. O

By noting that §/,m,n,p,q(07 0,0) =1 and ﬁg,m’n‘p’q is continuous, we can use a result
in [6, Theorem 3.3] to get the following Theorem 2.6.

Theorem 2.6. For o,L and p(=2n+1) sufficiently large, E/,m,w,q generates a
multiresolution approximation of LZ(R3), and E/,mv,,_’p,q is a biorthogonal dual to box
spline By yppg-

Proof. The proof presented here is suggested by Prof. Rong-Qing Jia. It follows the
ideas in [19] which established some similar results in the univariate setting. Mainly,
we need to prove that By ,,,,, is a biorthogonal dual to box spline By, ,,. Note
that the mask M, for B;.p4 and the mask M, for éﬂm,n_p’q satisfy the discrete
biorthogonal condition (2.7). We only need to prove the convergence of the cascade
algorithms associated with the masks My and M, in the L, norm. It is clear that the
cascade algorithm associated with M, converges to the well-known box spline
function By 5,4 in the L, norm. We thus need to show that the cascade algorithm

associated with M for a stable initial function ¢, e L,(R®) converges in the L, norm.
We choose

b0 = BL—t 6-mo—n2y+1—p,L—26—g+1-

With Mo(z) =§ >, ¢7, the cascade algorithm

bria(x) = Z ¢ (2x —j)

J

for k =0,1,2,... . By the Fourier transform, we have

<Z;k(601 , W2, 603)

k

y i1 )2 i /Y i3 /2PN B k

:H Mo(@ 1/ , € 3/ , € 3/ )BL—/,J—n1,J—n,2n+l—p,L—2a—q+](w/z)
J=1

= B‘Lfl’,ofm‘ofn,ZnJrl—p1L7207q+1 (a))
k
% H H, (eiwz/zf eiwz/zf)HL(eiw1/2f ei(cuz+w3)/2f)DL+n (e,‘w/zf).
j=1
It follows from
|I{a_(€iwz7 eiu)})l gpo(sin2(w2/2))]/ZPg(siHZ(w3/2)>l/2’

DLy ()| = Ppiy(sin® (0 + @2 + w3)/2))
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and the fact that [P, (sin’(w))|>1 for any positive integer 7 that
(1,02, 03)]
< |B‘L—/ﬂ—m o—n2n+1-p,L—25—q+1 ((1))‘

0

H 1w1/27 1/2 ( iwg/Zf)l/ZPU(eiw_;/Z")lﬂ

ﬁ zwer(m /2’)1/2 7L”(Ei(w]+w2+w3)/2/)

Jj=

( |(,U |) )L+/( + |w2‘)(u71)0+m( + ‘(/()3|) O'+l1
(

1)L+2 1 2u(L
3+ @3) "IN 4 o) + @ + ) E T

where p =

|¢k<w>l<C<<1 o) (1 + ) (1+es]) Y

for some o>0. For any ¢>0, we have

| bit(@) — e(@) do< C¥.
|w||> \(/)a|> \w;\>—

Since ¢k converges pointwise uniformly on any compact set, there exists an integer
ko big enough such that for k >k,

/ i (0) — el do<e.
o1 <o <L s <L

Hence, d)k is a Cauchy sequence and hence converges in the L, norm. That is, the
cascade algorithm converges. Therefore, By, is biorthogonal dual to box spline
B/.,m,n,p,q~ O

3. Construction of compactly supported biorthogonal wavelets

First, we introduce a notation A(Py,...,P7) for any 8 Laurent polynomials
Pi(z),j=0,...,7with z = (21, 22, 23). A(Po, ..., P7) is defined as an 8 x 8 matrix with
columns

[PJ(Z)7P( 21722723) P(Zl7 22723) P(Zl7227 3)73/(—217—22723)7
P./A(Zlaf 23) P( 21,22, 23)7})_/(72)]]"7 ]:0377

To construct biorthogonal wavelets associated with a trivariate box spline
function, we need to start from the mask M for the box spline function By 4 and

the mask M, for its dual function E/,m,n,]},q to find masks M, ..., M7 and M,, ..., M;
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such that

A(My, ..., M) A(My, ..., M7) = Iy, |z1| = |z2] = |23 = 1, (3.1)
where IgNdenotes the 8 x 8 identity matrix. Then we can define biorthogonal wavelets
Y; and y; for j=1,...,7 by, in terms of their Fourier transforms,

dion, ) = Mi(e' 2,67 &) By (595 T= 1,007 (32)
and

Uion, ) = Mi(e 2,67 By (520 %0), J= 1,007 (3.3)

By a result in literature (cf. [21] or [6]), these y;’s and I,Z_/’S generate biorthogonal
wavelets. That is, {2/y;(2'x —k);/€Z,keZ? j=0,..,7} and {27y, (2" x—
K);/'eZ, X e€Z?, j=0,...,7} constitute two dual Riesz bases for L,(R?), and

/m 2952 x — )27y (27 x — K) dx = 3, 30y

There is a matrix extension method available in the literature (cf. [20,28,29]) to
find such Mj,]\71j, j=1,...,7. However, we would like to generalize the extension
method in [14] to deal with these M}, ]\Zj’s. Our method does not rely on the Quillen—
Suslin Theorem and does not need an orthogonal procedure as the extension method
given in [28,29].

Our method for the construction of M;, M;,j =1, ...,7 satisfying (3.1) may be
divided into three steps:

Step 1: Find Laurent polynomials J;,j =1, ..., 7, such that the determinant of the

matrix  A(My,Jy,...,J7) is a non-trivial monomial. Since = My(z),
My(—z1,22,23), Mo(z1, =22, 23),
M()(Z] , 22, —23), M()(—Z], —Z7, 23), M()(Z], —Z, —23), M()(—Z] 522, —23), and Mo(—Z)
have no common zeros on (C\{O})3, the existence of Ji, ..., J7 is ensured by the
well-known Quillen—Suslin Theorem (cf. [23] or [31]). A computation of Ji, ..., J;
may be performed based on a general algorithm given in [24]. However, by taking
advantage of the special properties of box spline functions, we shall give a concrete
and elementary construction for those Ji, ..., J7.

Step 11: Compute the inverse of A(My, Jy, ..., J7)T. The inverse matrix also has the
form of A(pg, My, ..., M7) for Laurent polynomials po, M, ..., M;.

Step 111: Replace pg by My in A(py, M1, ..., M7). The inverse of A(My, My, ..., M7)
will be the form of 4(My, My, ..., M7). This will be clarified later.

First of all, let us give a detailed account for the first step. Let us write the mask
My(z) in the polyphase form

Mo(2) =/o(2%) + 21/i(2) + 222(2) + 23(2)
+ z120f4(2%) + 2223f5(2%) + z123f6(2%) + z12223/5(2%),
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where z? = (z7, 23, 23). It follows that fy, /i, ..., /7 have no common zeros since
[MO(Z)7 MO(_21)Z2723)7 MO(ZI) —Z2, 23)) MO(ZI7 2, _23)7

My(—z1,—22,23), Mo(z1, —22, —23), Mo(—21, 22, —23), Mo(—2)]"

= UE)(2), .. /i), (34)
where
1 Z Z Z3 2122 2223 123 212223 i
1 —Z] Vo) Z3 —Z1Zp Z7Z3 —Z1Z3 —ZI1Z2Z3
1 Z1 —I Z3 —Z1Zp —ZI2Z3 Z12Z3 —Z122Z3
Uz) = 1 =z Zy —Z3  Z1Zy < —ZpZ3 —Z1Z3 —Z1Z22Z3 7 (3.5)
1 —z1 —zp z3 Z1Zy  —Z3Z3 —Z1Z3  Z1Z223
1 Z1 —Z) —I3 —I1Zp Z7Z3 —Z1Z3 Z1Z22Z3
1 —Z1 i) —Z3 —Z1Zp —ZI7Z3 Z12Z3 Z122Z3
1 —z1 —zp —z3 zi2» 223 Z1Z3 —Z1Z2Z3
4 4.4

whose determinant is 4096z{z5z3.
We have to treat the case ¢ = 0 and ¢ >0 separately. We first show

Lemma 3.1. Suppose that ¢>0. Then the first seven polynomials fy, ...,fs have no
common zeros on (C\{0})’.

Proof. Suppose that z2e(C\{0})’ is one of the common zeros of these seven
polynomials. It follows that

My(z) = My(—z1,—22,23) = Mo(—z1,22, —23) = Mo(21, —z2, —23)
2212223f7(22)7

My(—z) =Mo(—z1,22,23) = Mo(z1, —22,23) = Moy(z1,22, —23)

= — ninnfi(2%).
Thus, we have
(14 2) (1 +2)" (1 + 23)"(1 + 212223) (1 + z223)", (3.6)
= —(1—2)) (1 +22)"(1 + 23)"(1 = z12223)" (1 + 2223)", (3.7)
= —(1+z) (14 2)"(1 = 23)"(1 = 212223 (1 — 2323)", (3.8)
=(1—2)) (1 +2)"(1 — 23)"(1 + 212223 (1 — z223)", (3.9)
=(1—2)) (1 = 2)"(1 + 23)"(1 + 212223)P (1 — z223)", (3.10)

= —(1+2)'(1 —2)"(1 +23)"(1 — 21z223)’ (1 — 2323)", (3.11)
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=(1+2) (1 —2)"(1 = 23)"(1 + 212023 (1 + z223), (3.12)

= —(1—2)(1 = 2)"(1 = 23)"(1 = 212223)P(1 + z323)". (3.13)
It is obvious that all those terms in (3.6)—(3.13) above cannot be zero simultaneously.
Otherwise all polynomials fp, ..., f; would have a common zero z% e (C\.{0})’.
From (3.6) and (3.12), and (3.9) and (3.10), respectively, we have
(1 —|—22)m(1 + Z3)n = (1 — Zz)m(l - Z3)n and (1 — Zz)m(l —|—Z3)n
= (1 +Zz)m(1 - Z3)n.
Thus, |1 4+ 2| = |1 — z,/*" and |1 — z3]*" = |1 4 z3)*". That is, z, and z3 have to be

purely imaginary numbers. Let us write z; = bi and z3 = ¢i with b, ceR.
Again from (3.6) and (3.10), and (3.7) and (3.11), respectively, we have

(142) (14 2)"(1 + 2223) = (1 — 21) (1 — 22)™(1 — z323)",
(1—=2) (14 2)"(1 + 2223) = (1 + 21) (1 — 22)™(1 — z323)".

It is easy to see that z; is a purely imaginary number. Let z; = ai with aeR. By (3.8)
and (3.13), we have

(14 ai)’ (14 bi)"(1 4 be)? = (1 — ai)’ (1 — bi)"™(1 — be)?.
Taking the absolute value both sides, we get |1 — bc|? = |1 + bc|? or be = 0. That is,

b =0 or ¢ = 0 which contradicts the assumption that ze (C\.{0})’. This completes
the proof. [

Lemma 3.2. Suppose that q = 0. Then the first six polynomials fy, ..., fs have at most
finitely many common zeros on (C\{0})".

Proof. Suppose that z2e(C\{0})’ is one of the common zeros of these six
polynomials. It follows that

Mo(z) = — Mo(—z1,22,23) = —My(z1, 22, —23)
= My(—z1, 22, —23) = 2123f5(2%) + z122235(2),
Mo(—z) = My(z1, —22,23) = —Mo(—2z1,—22,23)
= — My(z1, —22, —23) = 2123f5(2%) — z12223f7(2%).
Thus, we have

(14 2) (1 +2)"(1 + 23)"(1 4+ z12223)"

= —(1—z) (1 +22)"(1 +23)"(1 = zy2223)"

=—(1+2)(1+2)"(1 = 23)"(1 = 21 2223)"

=(1—z)(142)"1 = 2)"(1 + 212023 (3.14)
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and
(1421) (1 = 2)"(1 + z3)"(1 = z12223)"
=—(1- zl)/(l —2)"(1 + z3)"(1 + z12223)"
=—(142) (1 —2)"(1 = z3)"(1 + z2223)
=(1—z)(1—2)"1 —2)"(1 — z12023).
The above two groups of equations cannot be zero simultaneously. Without loss of
generality, we assume the first group of equations is not zero. Then we can get
[1+z||1 +z3] = |1 —z1||1 — z3] and |1 — z;||1 + z3| = |1 + z1||1 — z3]-
It follows that z;y +Zz7 = 0 and z3 + z3 = 0. That is, z; = ai and z3 = c¢i with a and ¢
real. By (3.14), we have
(14 ai)’ (1 — acz) = —(1 — ai)’ (1 + acz, ),
— (1 =—ai)’ (1 — aczY = (1 4+ ai) (1 + acz ),
which implies that
(1 —acz)” = (1 + acz,)™. (3.15)

It is easy to see that z; is a purely imaginary number. Let z, = bi for some beR. It
follows from (3.14) that

(1 4 ai)' (1 — abei)’ = —(1 — ai)’ (1 + abci)’,
— (1 +ai)’ (1 + abei)’ = (1 — ai)’ (1 — abci) . (3.16)

Look at the complex conjugate of both sides of (3.16), one can see that (1 + ai)’ (1 —

abei)’ is a purely imaginary number and so is (14 ai)’ (1 + abci)’. Thus, (1+
ai)” (1 4+ a®b*c*)’ is a real number or (14 ai)” is a real number. Consequently,

’/‘(1)(2k2«i 1>a2k(1)k =0, which has only finitely many real solutions for a.

Similarly there are only finitely many real solutions for ¢. Eq. (3.15) becomes (1 +
abei)? = (1 — abei)?, which implies that (1 + abei)® is a real number. Obviously

there are finitely many b’s to make (1 + abci)zP real. Hence, at most finitely many z’s
satisfy (3.14). This completes the proof of the Lemma 3.3. [

Lemma 3.3. There exists an 8 x 8 Laurent polynomial matrix 2%(z) with real

coefficients such that the first column of % is [fo.f1, ---, f7]T and the determinant of
RBis 1.

Proof. We first consider the case that ¢ = 0. By Lemma 3.2, we may assume that
fo, -...fs have r common zeros in (C\{0})’ for r>1 (if r = 0, then it is trivial), which
are w;,j =1, ...,r. Now we consider fs + kf7 for some real number k. Since fy, ...,f7
have no common zero, fs(w;) and f7(w;) cannot be equal to zero simultaneously for
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any j = 1, ..., r. Thus, there exists a ko #0 such that f; = fs + kqfy does not vanish on
all the wy’s. It follows that fy, ...,f5.fe have no common zero in (C\{O})3. By
Hilbert’s Nullstellensatz Theorem, (cf. [16]), there exist polynomials py, ..., ps With

real coefficients such that

5

S 5@ +sps(z) = 1.

7=0

Note that
i
N
S
S
J4
fs
Je
S

fo
N
f2
/3
Ja
s
e
Lf7]

1
fs
/s
Ja
/3
12
fi

/o

1

—ko

L1 ope(fr=1) ps(fi —1)

Jo
h
S
Ve
Ja
fs
Jo

Lf7

pi(fi—=1) po(fs —1)




W. He, M.-J. Lai | Journal of Approximation Theory 120 (2003) 1-19 15

and

1 1 1
fo| |fs 1 0
Vo 0
fo| | 1 0
fi fi 1 0
¥ f 1 0
N N 1 0
hl o e 1] 0]

The desirable matrix 4 is the product of the three matrices above whose determinant
is equal to 1.

For the case that ¢>0, we use Lemma 3.1. In this case, we take k = 0, that is,
f6 = fs. The desirable matrix 2 is the product of the last two matrices above. This
completes the proof of Lemma 3.3. [

We now give the detail of Steps II and III. By Lemma 3.3 and (3.4), we can take
A(Mo, Jy, ..., J7) = U(z)%(z?), where U(z) is defined in (3.5). Since the determinant
of A(My,Ji, ..., J7) is 4096212323, it is invertible on the Laurent polynomial ring. Let
A(po, My, ..., M7) be the inverse of A(Mjy,J;, ...,J7)T. Using a definition of the
inverse of matrices, it is easy to see that

1
My(z) =———
o2) 4096212524
Mi(-z1,22,23) MTI(ZI,—ZLZI) MTl(—z)
« det Mz(—Z},Zz,Z3) M2(217.—227Z3) Mz(.—z) (3.17)
M7(_217227Z3) MT7(217—227Z3) M7(—z)

Replacing py in A(pg, MTl, ,MT7) by the dual mask M, which is given in Theorem
2.1, we notice that det(4(My, My, ..., M7)) = 4096242324 by the co-factor expansion
of the first column, (3.17) and (2.7). Let A(qo, M1, ..., M7) be the inverse of

A(MTO, MTI, ..., M7). One can see that o in A(qo, M1, ..., M7) is exactly the same as
M, by observing that they both have the same expression of the right-hand side of
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(3.17). Therefore,

A(Mo, My, ..., M7)A(My, M, ..., M7)" = I.

We remark here that the method used in Steps II and III can be generalized to any
multivariate settings.

4. Examples

In the following, let us give some examples associated with box spline
functions for small integers (/,m,n,p). Based on the construction in the
previous section for case that ¢#0, we only need to find polynomials py, ..., ps
such that

pofo+ - +pefo =1, (4.1)

where fy, ...,fs are the first 7 polyphase components of the mask for box spline
function By upq0- For g =0, for the small integers /,m,n,p, we can verify that
fo, ..., fs have no common zeros on (C\.{0})*. Thus, we can use the same method as
q#0 to construct the masks M, ..., M7 and J;, ..., J7.

We may use the Grdébner basis method as described in [1] to compute the
polynomials py, ..., p¢ satisfying (4.1) for polynomials fy, ..., fs associated with box
spline functions. (The authors wish to thank Dr. Lingyun Ma for her
MATHEMATICA programs for computing py,...,ps based on Buchberger’s
algorithm using the Grobner basis.) Some outputs of those programs are given
below.

Example 1. For the box spline By 11,1, we have

po=1/2, pr=-21/2, pp=p3=ps=0, ps=1/2, ps=0.

Example 2. For the box spline B> 1,1, we have

p0:]/87 D1 :_]/167 D2 = 1/167 P3:_Z§7 P4 = 1/47
ps=—1/16 —23/16, ps = 0.
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Example 3. For the box spline B;5, 1, we have

1433 1 253 5 1 53

Po 6 T3t s T 2T T

17 2523 39z 7523 923
P3=—55— - , P4 = - )
32 128 128 128 128

_ 752% 632% B 32%

Ps =8 T 128 PO T 3

Example 4. For box spline By»,,, we have
8779 611372% 97755525 29061092% 611372%2%
Po= — + + +
1742528 ° 435632 3485056 3485056 435632
4704752%2% 542472%2%2% 31044372‘31
3485056 1742528 3485056 °

6486213 67469122 6113724 62345522 9261052322
PU= 73485056 3485056 1742528 13940224 ' 13940224
17725709z§+48453952%z§ 611372422 2993352322
13940224 13940224 1742528 13940224
82347232323 54247242222 310443723 31044372324
13940224 3485056 13940224 13940224 °

_ 1915821 | 172667z 2813863 3164295323 1936954
P2 77871064 T 1742528 13940224 1742528 13940224

1380915523 611372323 2815445323 61137232323
13940224 1742528 3485056 1742528

| 6416152323 31044374 31044372374
13940224 13940224 13940224

16063 6382322 8398522 2343322 58451237}

P3= T108008 T 435632 435632 | 435632 435632
5296352322 311948324
1742528 1742528

584512 1456523 31912323 277397 427857373
PY=TO17816 217816 | 27227 871264 871264 °

456687  61137z7 249382523 1979611723 611372323

Ps= T 1722538 871264 T 6970112 6970112 | 871264
656727373 | 1903012232 | 193695243 | 310443724
6970112 1742528 3485056 6970112
30536652324
3485056

17
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364375 19415522 19369523 1818835722 611372223

Ps =%71264 ~ 871264 | 6970112 T 6970112 | 871264
6416152322 310443724
6970112 ' 6970112
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